Nomadic: Normalising Maliciously-Secure Distance with Cosine Similarity for Two-Party Biometric Authentication

Jul 1, 2024·
Nan Cheng
Nan Cheng
,
Melek Önen
,
Aikaterini Mitrokotsa
,
Oubaïda Chouchane
,
Massimiliano Todisco
,
Alberto Ibarrondo
· 1 min read
Abstract
Tackling a widely used distance metric, {\sc Nomadic} studies the privacy-preserving evaluation of cosine similarity in a two-party (2PC) distributed setting. We illustrate this setting in a scenario where a client uses biometrics to authenticate to a service provider, outsourcing the distance calculation to two computing servers. In this setting, we propose two novel 2PC protocols to evaluate the normalising cosine similarity between non-normalised two vectors followed by comparison to a public threshold, one in the semi-honest and one in the malicious setting. Our protocols combine additive secret sharing with function secret sharing, saving one communication round by employing a new building block to compute the composition of a function $f$ yielding a binary result with a subsequent binary gate. Overall, our protocols outperform all prior works, requiring only two communication rounds under a strong threat model that also deals with malicious inputs via normalisation. We evaluate our protocols in the setting of biometric authentication using voice, and the obtained results reveal a notable efficiency improvement compared to existing state-of-the-art works.
Type

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.